Tender Heart High School, Sector 33B, Chd.

Class 9, Mathematics Date 5.08.2024 Ms. Reena Chapter-10 Pythagoras Theorem A Pythagoras, a Greek Philospher of sixth century B.C. discovered a very important and useful property of Height right angled triangles, named Pythagoras property. In a right angled triangle, the sides have special names. B 4 Base. The side opposite to the right angle is called hypotenuse and the other two sides are base and height (altitude) Theorem :- In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. i.e. $AB^2 = AC^2 + BC^2$ (Note: Proof is not required) Converse of Pythagoras Theorem In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle. i.e. If $AB^2 = AC^2 + BC^2$ then $\angle C = 90^\circ$

-> Pythagoras theorem was earlier given by an ancient <u>mathematician Baudhayan</u> (about 800B.C.)

-Page1-

Class 9, Mathematics

Example 1: In triangle ABC, AD is
berbendicular to BC. Prove that

$$AB^{2}+CD^{2} = AC^{2}+BD^{2}$$

Solution: In $\triangle ABD, \angle ADB = 90^{\circ}$
 $\therefore AB^{2} = AD^{2}+BD^{2}$ (i)
 By Pythagoras theorem)
In $\triangle ACD, \angle ADC = 90^{\circ}$
 $\therefore AC^{2} = AD^{2}+CD^{2}$ (ii)
Subtracting (ii) from (i), we get
 $AB^{2} - AC^{2} = BD^{2} - CD^{2} \Rightarrow AB^{2} + CD^{2} = AC^{2} + BD^{2}$
Example 2: In an acute angled $\triangle ABC$ A
in which $\angle B$ is acute and $AD \perp BC$,
prove that:-
 $AC^{2} = AB^{2} + BC^{2} - 2BC \times BD$
Solution:- In $\triangle ADB, \angle ADB = 90^{\circ}$
 $\therefore AD^{2} + BD^{2} = AB^{2} - (ii)$
 $Example 2 = AD^{2} + BC^{2} - 2BC \times BD$
 $AC^{2} = AD^{2} + BC^{2} - 2BC \times BD$
 $AC^{2} = AD^{2} + BC^{2} - ... (ii)$
 $AD^{2} + (BC^{2} + BD^{2})^{2} - ... (ii)$
 $AD^{2} + (BC^{2} + BD^{2})^{2} - 2BC \times BD$
 $AD^{2} + BC^{2} - 2BC \times BD$
 $AB^{2} + BC^{2} - 2BC \times BD$
 $AD^{2} + BD^{2} + BC^{2} - 2BC \times BD$
 $AB^{2} + BC^{2} - 2BC \times BD$
 $AB^{2} + BC^{2} - 2BC \times BD$
 $AB^{2} + BC^{2} - 2BC \times BD$

Ms. Reena

-Page 2 -

Class

AB = 2A

From

value

From

and

In D

Class 4, Mathematics
Example 3:- In an equilateral
$$\triangle ABC$$
,
if $A \supseteq \bot BC$, prove that, $\exists AB^{\pm} = 4 AD^{\pm}$
Solution:- In $\triangle ADB$ and $\triangle ADC$, we have
 $AB = AC$, $\angle B = \angle C = 60^{\circ}$ and
 $\angle ADB = \angle ADC = 90^{\circ}$
 $\therefore \triangle ADB \cong \triangle ADC$
So, $BD = DC$
From right $\triangle ADB$, we have $AB^{2} = AD^{2} + BD^{2}$
 $\Rightarrow AB^{2} = AD^{2} + (\frac{1}{\angle}BC)^{2} = AD^{2} + \frac{1}{\angle}BC^{2}$
 $\Rightarrow \forall AB^{2} = 4AD^{2} + BC^{2}$
 $\Rightarrow \forall AB^{2} = 4AD^{2} + BC^{2}$
 $\Rightarrow \forall AB^{2} = 4AD^{2} + AB^{2} \Rightarrow \exists AB^{2} = \forall AD^{2}$
 $Example 4:$ - In the given
figure, $AE = DC = 13 cm$,
 $BE = 5 cm$, $\angle ABC = 90^{\circ}$ and
 $AD = EC = x cm$. Calculate
the length of AB and the.
value of x.
Solution:- In $\triangle ABE$, $\angle B = 90^{\circ}$;
 $\therefore AE^{2} = AB^{2} + BE^{2} \Rightarrow AB^{2} = AE^{2} - BE^{2}$
 $\Rightarrow AB^{2} = (3)^{2} - (5)^{2} = 169 - 25 = 144$
 $\Rightarrow AB = 12 cm$
From figure, $BD = AB - AD = (12 - x) cm$
and $BC = BE + EC = (5 + x) cm$.
In $\triangle BCD$, $\angle B = 90^{\circ}$
 $\therefore CD^{2} = BD^{2} + BC^{2}$
 $\Rightarrow (13)^{2} = (12 - x)^{2} + (5 + x)^{2}$

$$=$$
 169 = 149 + x² - 24x + 25 + x² + 10x

$$\Rightarrow 169 = 169 + 2x^2 - 19x$$

$$\Rightarrow 2x^2 - 14x = 0 \Rightarrow 2x(x-7) = 0 \Rightarrow x = 7 \text{ cm}$$

-Page 3 (Last page)-