Tender Heart High School ,Sector 33B, Chd.

Chapter 18 Circumference and Area of a Circle

Class 9th

Maths

Date: 25.11.2024

-Page1-

Ms. Reena

Class 9th, Mathematics	Ms.Reena
3) Perimeter and area of a semicircle. If 9° is the radius of a circle, then	
is the perimeter of the semicircle	
$=\frac{1}{2} \times 2\pi r + 2r$	
$=(\pi+2)r$	
(ii) the area of the semicircle	- 0
$= \frac{1}{2}\pi \mathfrak{R}^2$	
4) Perimeter and area of a guadrant	ofa
civele	
If r is the radius of a circle,	
then n	
(i) the perimeter of the o	r Q
$2uadrant = \frac{1}{4} \times 2\pi r + 2r$	
$=\left(\frac{\pi}{2}+2\right)\mathcal{R}$	
(ii) the area of the guadrant	
$= \frac{1}{4}\pi \mathfrak{R}^2$	
NOTE: - Areas of sectors of circles other quarter - circle and semicircle of included.	er than are not
Students now let us disseuss few	avamble

based on circle, semi-circle and quadrant

- Page 2 -

Ms. Reena

Class 9th, Mathematics

Example 1:- The area of a circle is 301.84cm? Calculate :- is the radius of the circle in cm (ii) the circumference of the circle, correct to nearest cm. <u>Solution:</u>- (i) Let the radius of the circle be r cm. Then, its area = πr^2 cm² Therefore, $\pi r^2 = 301.84 \Rightarrow \frac{22}{7} \times r^2 = 301.84$ =) $\Re^2 = (301.84 \times \frac{7}{22}) = 96.04 \Rightarrow \Re = 96.04$ = 9.8 cmRadius of the circle = 9.8 cm (ii) Circumference of the circle = 2502 $= 2 \times \frac{22}{7} \times 9.8 = 61.6 \text{ cm}$ Therefore, circumference of the circle, correct to nearest cm = 62 cm Example 2:- The area enclosed by the circumferences of two concentric circles is 346.5 cm². If the circumference of the inner circle is 88 cm, calculate the radius of the outer circle. Solution :- Let the radius of inner circle be rcm. Then, its circumference = (2522) cm. $2\pi r = 88 \implies 2 \times \frac{22}{7} \times r = 88 \implies r = 88 \times \frac{7}{44}$ ⇒ 2 = 14 cm Radius of the inner circle is, r = 14cm - Page 3 -

Ms. Reena

Class 9th, Mathematics

Let the radius of the outer circle be Rcm. Then, area of the ring = $(\pi R^2 - \pi r^2) cm^2$ $= \pi (R^{2} - \pi^{2}) cm^{2} = \frac{22}{7} [R^{2} - (14)^{2}] cm^{2}$ $= \left(\frac{22}{7}R^2 - 616\right)cm^2$ herefore, $\frac{22}{7}R^2 - 616 = 346.5$ $\Rightarrow \frac{22}{7}R^2 = 962.5 \Rightarrow R^2 = 962.5 \times \frac{7}{22} = 306.25$ \Rightarrow R = $\sqrt{306.25}$ = 17.5 cm. Hence, the radius of outer circle is 17.5cm Example 3:- In the figure alongside, OAB is a guadrant of a circle. The radius OA = 3.5cm 2cm and OD = 2cm. Calculate the - 3.5 cm - A area of the shaded portion. Solution :- We have Area of $\triangle OAD = \frac{1}{2} \times OA \times OD = \frac{1}{2} \times 3.5 \times 2 = 3.5 \text{ cm}^2$ Area of guadrant OAB = $\frac{1}{4}\pi r^2$ $= \frac{1}{4} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \operatorname{cm}^{2} = \frac{77}{8} \operatorname{cm}^{2} = 9.625 \operatorname{cm}^{2}$ Area of shaded portion = Area of quadrant OAB - Area of DOAD =(9.625-3.5) cm² $= 6.125 \text{ cm}^2$ - Page 4 -

Class 9th, Mathematics

Example 4:- The diameter of the driving wheel of a bus is 140 cm. How many revolutions must the wheel make in order to keep a speed of 66 km/hr? Solution :- Distance to be covered in 1 min. $= \left(\frac{66 \times 1000}{50}\right) m = 1100 m$ Radius of the wheel = $\frac{140}{2}$ = 70_{cm} = 0.70 m Circumference of the wheel = $2\pi r$ $= 2 \times 22 \times 0.70 = 4.4m$ Therefore, number of revolutions per minute $=\frac{1100}{4.4}=250$ Hence, the wheel must make 250 revolutions per minute.

- Page 5

Ms. Reena

Class 9th, Mathematics
Example 5 Given, radius = 21cm
=> diameter = 2×21 = 42cm
=> diameter = $2 \times 21 = 42 \text{ cm}$ So, $AC + CD + DB = 42 \text{ cm}$ Since $AC + CD = DB$
Since $AC = CD = DB$
$\Rightarrow \frac{42}{3} = 14 \text{ cm each}$
Now, Perimeter of shaded = AC + CB + AB
= Circumference of semicircle with radius
$f_{2} = AC = 14 = 7cm$ 7
$r_2 = cD = 14cm$ and $r_3 = \frac{AB}{2} = 21cm$
= $\pi \mathfrak{R}_1 + \pi \mathfrak{R}_2 + \pi \mathfrak{R}_3$
$= \frac{22}{7} \left(7 + 14 + 21 \right) = \frac{22}{7} \times 42 = 132 \text{ cm}$
Area of shaded region
$= \frac{1}{2}\pi \Re_{1}^{2} + \frac{1}{2}\pi \Re_{2}^{2} - \frac{1}{2}\pi \Re_{3}^{2}$
i.e. Area of semi-circle [AC + AB - CB]
$= \frac{1}{2} \times \frac{22}{7} \left((7)^{2} + (21)^{2} - (14)^{2} \right)$
$= \frac{11}{7}(49 + 441 - 196)$
$= \frac{11}{7} \times 294 = 462 \text{ cm}^2$

- Page 6 (last page) -