

MEASURES OF CENTRAL TENDENCY (MEAN)

Syllabus : Mean : Mean for raw and arrayed data. Mean by all three methods included. Direct : $\frac{\Sigma f x}{\Sigma f}$, Short-cut : $A + \frac{\Sigma f d}{\Sigma f}$, where d = x - AStep Deviation : $A + \frac{\Sigma f t}{\Sigma t} \times i$, where $t = \frac{x - A}{i}$

Introduction

Suppose we want to compare the wage distribution of workers in two factories and try to know which factory pays more to its workers. Clearly, by comparing on individual basis, we conclude nothing. However, if for each data, there exists a certain value representing that data, then the comparison becomes very clear.

Average of a Data

For a given data, a single value of the variable representing the entire data, which describes the characteristics of the data, is called an average of the data.

An average tends to lie centrally with the values of the variable arranged in ascending order of magnitude. So, we call an average a *measure of central tendency* of the data.

Mainly, we are interested in three types of averages :

(i) Mean (ii) Median (iii) Mode.

Arithmetic Mean

The average of numbers in arithmetic is known as the Arithmetic Mean of these numbers in statistics.

Mean of an Ungrouped Data

The Arithmetic Mean or simply the Mean of n observations $x_1, x_2, x_3, ..., x_n$ is given by the formula :

Mean =
$$\frac{(x_1 + x_2 + x_3 + ... + x_n)}{n} = \frac{\Sigma x_i}{n}$$

where the symbol Σ , called sigma stands for the summation of the terms.

SOLVED EXAMPLES

Example 1.	Calculate the mean of the following numbers :
	(i) 14 11 23 14 18 7 8 5 (ii) $5.8, 6.3, 7.1, 4.9, 9.4$
Solution :	(<i>i</i>) 14, 11, 23, 14, 10, 7, 6, 6 (<i>i</i>) Sum of the given numbers = $(14 + 11 + 23 + 14 + 18 + 7 + 8 + 5) = 100$
	Number of these numbers = 8. Mean of the given numbers $=\frac{100}{8}=\frac{25}{2}=12.5$

(*ii*) Sum of the given numbers = (5.8 + 6.3 + 7.1 + 4.9 + 9.4) = 33.5. Number of these numbers = 5.

Mean of the given numbers $=\frac{33.5}{5}=6.7$

If the mean of 7, 10, 4, 12, x, 3 is 7.5, find the value of x. Example 2. Sum of the given numbers = (7 + 10 + 4 + 12 + x + 3) = (36 + x). Solution : Number of these numbers = 6. Mean of the given numbers = $\frac{36+x}{6}$.

But, mean = 7.5.

$$\therefore \ \frac{36+x}{6} = 7.5 \Rightarrow 36 + x = 45 \Rightarrow x = (45 - 36) = 9.$$

Hence, x = 9.

The weights (in kg) of 5 persons in a group are : Example 3. 61, 55, 48, 63, 59. Find their mean weight.

Sum of the weights of the given persons = (61 + 55 + 48 + 63 + 59) kg = 286 kg. Solution : Number of persons = 5.

Mean weight = $\left(\frac{286}{5}\right)$ kg = 57.2 kg.

Some Useful Results

Let the mean of $x_{1,} x_{2'} x_{3'}$, x_n be A. Then

- (i) Mean of $(x_1 + k)$, $(x_2 + k)$, $(x_3 + k)$, $(x_n + k)$ is (A + k);
- (ii) Mean of $(x_1 k)$, $(x_2 k)$, $(x_3 k)$, $(x_n k)$ is (A k);
- (iii) Mean of kx_1 , kx_2 , kx_3 , kx_n is kA, where $k \neq 0$.

The above results will be more clear from the following example.

The marks obtained by 15 students in a class-test are : Example 4.

(i) their mean marks; Find :

- (ii) the mean of their marks, when the marks of each student are increased by 3;
- (iii) the mean of their marks, when 2 marks are deducted from the marks of each student;
- (iv) the mean of their marks, when the marks of each student are doubled.

Solution :

(i) Sum of all the marks = 174. Number of students = 15.

Mean Marks =
$$\frac{174}{15}$$
 = 11.6.

(*ii*) On increasing 3 marks of each student, marks increased = $(15 \times 3) = 45$. New sum of all the marks = (174 + 45) = 219. Number of students = 15.

Mean Marks now =
$$\frac{219}{15} = 14.6$$
.

Foundation Mathematics for Class X

(iii) On decreasing 2 marks of each, marks decreased = (15 × 2) = 30. New sum of all the marks = (174 - 30) = 144. Number of students = 15. Mean Marks now = 144/15 = 9.6.
(iv) On doubling the marks of each, the sum is doubled.
∴ New sum of all the marks = (2 × 174) = 348.

Number of students = 15.

Mean Marks now =
$$\frac{348}{15}$$
 = 23.2.

Mean of Grouped Data

I. Direct Method : When the variates $x_1, x_2, x_3, \dots, x_n$ have frequencies f_1, f_2, f_3 ..., f_n respectively, then the mean is given by the formula :

 $\mathbf{Mean} = \frac{(f_1 x_1 + f_2 x_2 + f_3 x_3 \dots + f_n x_n)}{(f_1 + f_2 + f_3 + \dots + f_n)} = \frac{\Sigma f_i x_i}{\Sigma f_i}$

Example 5. The following table shows the weights of 15 members of an athletic team in a school.

Weight (in kg)	42	45	46	48	49
Number of athletes	4	3	5	2	1.1

Find the mean weight.

Solution :

n: From the above data, we may prepare the table given below :

Weight (in kg) x_i	Number of athletes (Frequency) f_i	$f_i x_i$
42	concentration that the final field the moo	168
45	3	135
46	5	230
48	2	96
49	$M = A$ of Ω_1 is measured by $A = R$. The second secon	49
	$\Sigma f_i = 15$	$\Sigma f_i x_i = 678$

 $\therefore \text{ Mean Weight} = \frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{678}{15} = 45.2 \text{ kg}.$

Hence, the mean weight of the given team is 45.2 kg.

Example 6.

The marks obtained by 40 students in a short assessment are given below, where a and b are two missing data :

Marks	5	6	7	8	9
Number of students	6	a	16	13	ь

If the mean of the distribution is 7.2, find a and b.

(2012)

```
Solution : We have
```

Marks (x)	Number of students (f)	$(f \times x)$
5	6	30
6	a	6a
7	16	112
8	13	104
9	Ь	96
. Langely days	$\Sigma f = (35 + a + b)$	$\Sigma(fx) = 246 + (6a + 9b)$

But,
$$\Sigma f = 40 \Rightarrow 35 + a + b = 40 \Rightarrow a + b = 5$$

Also, Mean =
$$\frac{\Sigma(f \times x)}{\Sigma f} = \frac{246 + (6a + 9b)}{40}$$

$$\therefore \frac{246 + (6a + 9b)}{40} = 7.2 \implies 246 + (6a + 9b) = 40 \times 7.2$$
$$\implies 246 + (6a + 9b) = 288 \implies 6a + 9b = 42$$
$$\implies 2a + 3b = 14 \qquad \dots (ii)$$

On solving (i) and (ii), we get : a = 1 and b = 4.

- II. Short Cut Method for Finding Mean of Grouped Data (Not in Classes) : Under this method, larger quantities get converted into smaller ones, making the process of multiplication and division easier.
 - From the given data, we suitably choose a term, usually the middle term Method : and call it the assumed mean, to be denoted by A. We find the deviations, $d_i = (x_i - A)$ for each term. $\begin{aligned} \mathbf{a}_{i} &= (\mathbf{x}_{i} - \mathbf{A}) \text{ for each term.} \\ Then, we apply the formula : Mean = \left(\mathbf{A} + \frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}\right). \end{aligned}$

Example 7.	Using short	cut method,	find the mean	from the	following data.
------------	-------------	-------------	---------------	----------	-----------------

Variate (x _i)	18	19	20	21	22	23	24
Frequency (f_i)	184	212	327	376	614	372	415

Solution :

Let the assumed mean be, A = 21.

From the given data, we prepare the table given below :

Variate (x _i)	Frequency (f _i)	$d_i = (x_i - A)$ = $(x_i - 21)$	$f_i d_i$
18	184	-3	-552
19	212	-2	-424
20	327	-1	-327
21 = A	376	0	0
22	614	1	614
23	372	2	744
24	415	3	1245
	$\Sigma f_i = 2500$		$\Sigma f_i d_i = 1300$

...(i)

$$\therefore \quad \text{Mean} = \left(A + \frac{\Sigma f_i d_i}{\Sigma f_i} \right) = \left(21 + \frac{1300}{2500} \right) = \left(21 + \frac{13}{25} \right) = 21 + 0.52 = 21.52 \,.$$

Hence, the mean is 21.52.

Formulae for Mean of Grouped Data in the form of classes

I. Direct Method

Step 1. For each class, find the class mark x_i by using the relation, $x_i = \frac{1}{2}$ (lower limit + upper limit). **Step 2.** Use the formula, **Mean =** $\frac{\Sigma f_i x_i}{\Sigma f_i}$.

II. Short Cut Method or Deviation Method

Step 1. For each class, find the class mark x_i .

Step 2. Let A be the assumed mean.

Step 3. Find $d_i = (x_i - A)$.

Step 4. Use the formula, **Mean =** $\left(A + \frac{\Sigma f_i d_i}{\Sigma f_i}\right)$

III. Step Deviation Method

Step 1. For each class, find the class mark x_i .

Step 2. Let A be the assumed mean.

Step 3. Calculate,
$$u_i = \frac{(x_i - A)}{2}$$
, where c is the class size.

Step 4. Use the formula, **Mean** = $\left(A + c \cdot \frac{\Sigma f_i u_i}{\Sigma f_i}\right)$

Example 8. Using direct method, find the mean of the following frequency distribution:

Class-interval	80 - 100	100 - 120	120 - 140	140 - 160	160 - 180
Frequency	20	30	20	40	90

Solution :

From the given data, we may prepare the table given below :

Class-interval	Class Mark (x_i)	Frequency (f_i)	$(f_i \times x_i)$
80 - 100	90	20	3) - å./s 1800
100 - 120	110	30	3300
120 - 140	130	20	2600
140 - 160	150	40	6000
160 - 180	170	90	15300
		$\Sigma f_i = 200$	$\Sigma f_i x_i = 29000$

: Mean =
$$\frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{29000}{200} = 145$$

Example 9. Calculate the mean of the following distribution using Short Cut Method :

Class-interval	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80
Frequency	5	8	30	25	14	12	6
From the given	n data, v	ve may	prepare t	he freque	ncy dist	ribution	table as

Solution :

under. Let the assumed mean be, A = 62.5.

Class-interval	$\begin{array}{c} \text{Mid-value} \\ (x_i) \end{array}$	Frequency (f_i)	$d_i = (x_i - \mathbf{A})$	$f_i \times d_i$
$\begin{array}{r} 45 - 50 \\ 50 - 55 \\ 55 - 60 \\ 60 - 65 \\ 65 - 70 \\ 70 - 75 \\ 75 - 80 \end{array}$	$\begin{array}{c} 47.5 \\ 52.5 \\ 57.5 \\ 62.5 = A \\ 67.5 \\ 72.5 \\ 77.5 \end{array}$	5 8 30 25 14 12 6	$ \begin{array}{r} -15 \\ -10 \\ -5 \\ 0 \\ 5 \\ 10 \\ 15 \\ \end{array} $	$ \begin{array}{r} -75 \\ -80 \\ -150 \\ 0 \\ 70 \\ 120 \\ 90 \\ \end{array} $
		$\Sigma f_i = 100$	Start Barry Barry	$\Sigma f_i d_i = -25$

Hence, the mean is given by : $\bar{x} = A + \frac{\Sigma f_i d_i}{\Sigma f_i} = 62.5 + \left(\frac{-25}{100}\right) = 62.5 - 0.25 = 62.25$

Hence, the mean of the given data is 62.25

Example 10. Calculate the mean of the following frequency distribution using the Short Cut (2014) Method:

Marka	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60	61 - 70	71 – 80
Marks Number of	2	6	10	12	9	7	a sia 4
students							hom into

Solution :

The given class intervals are in inclusive form. So, we convert them into exclusive form, and prepare the table as given below.

Marks	$\frac{\text{Class-mark}}{(x_i)}$	No. of students (f_i)	$d_i = x_i - A$ $= x_i - 45.5$	$f_i \times d_i$
10.5 - 20.5	15.5	2	- 30	- 60
10.5 - 20.5 20.5 - 30.5	25.5	6	- 20	- 120
20.5 - 30.5 30.5 - 40.5	35.5	10	- 10	- 100
30.5 - 40.5 40.5 - 50.5	(45.5 = A)	12	0	0
40.5 - 50.5 50.5 - 60.5	55.5	9	00010	90
60.5 - 70.5	65.5	7	20	140
70.5 - 80.5	75.5	4	30	120
10.0 - 00.0		$\Sigma f_i = 50$	as out to	$\Sigma f_i d_i = 70$

 $\therefore \text{ Mean} = \text{A} + \frac{\Sigma f_i d_i}{\Sigma f_i} = \left(45.5 + \frac{70}{50}\right) = (45.5 + 1.4) = 46.9.$

Example 11. The histogram given below represents the marks obtained by some candidates in an examination. Using the data in the diagram, calculate the mean marks.

Solution :

Here, class size, c = 5.

Thus, from the given data, we may prepare the table as shown below :

Class-interval	Class-mark (x_i)	Frequency (f_i)	$d_i = (x_i - A)$ = $(x_i - 22.5)$	$f_i d_i$
10 - 15	12.5	10	- 10	- 100
15 – 20	17.5	15	- 5	- 75
20 - 25	22.5 = A	20	0	0
25 - 30	27.5	16	5	80
30 - 35	32.5	15	10	150
35 - 40	37.5	5	15	75
and the second second	15 25 BBI	$\Sigma f_i = 81$	and the second	$\Sigma f_i d_i = 130$

Mean
$$=\left(A + \frac{\Sigma f_i d_i}{\Sigma f_i}\right) = \left(22.5 + \frac{130}{81}\right) = (22.5 + 1.6) = 24.1.$$

Hence, mean marks = 24.1.

Example 12. Us								
Height (in cm)	135-140	140-145	145-150	150-155	155-160	160–165	165-170	170 –175
Number of boys		9	18	28	24	10	5	2

Solution : Here, class size, c = 5. Take assumed mean, A = 152.5.

Thus, from the given data, we may prepare the table given below :

Class-interval	Class-mark (x_i)	Frequency (f_i)	$\left(u_i=\frac{(x_i-A)}{c}\right)$	$f_i u_i$
135 - 140	137.5	4	- 3	- 12
140 - 145	142.5	9	- 2	- 18
145 - 150	147.5	18	- 1 1 1 1 A	- 18
150 - 155	152.5 = A	28	0	0
155 - 160	157.5	24	inin in 1 com n	24
160 - 165	162.5	10	2	20
165 - 170	167.5	5	3	15
100 = 170 170 = 175	172.5	2	4	8
110 110		$\Sigma f_i = 100$	por min or entran	$\Sigma f_i u_i = 19$
$Mean = \begin{pmatrix} A \end{pmatrix}$	$\left(1 + c \times \frac{\sum f_i u_i}{\sum f_i}\right) =$	$\sum f_i = 100$ $= \left(152 \cdot 5 + \frac{5 \times 19}{100}\right)$	$\left(152.5 + 0.9\right)$	

Example 13. The following table gives the life-time (in days) of 100 electric bulbs of a certain make:

		and the second sec		The second s		
Life-time (in days)	Less than 50	Less than 100	Less than 150	Less than 200	Less than 250	Less than 300
Number of bulbs	7	21	52	79	91	100

From this table, construct the frequency distribution table and hence find the mean life-time of these bulbs.

Solution :

We may prepare the table as under :

Class- interval	Class- mark (x_i)	Cumulative frequency	Frequency (f_i)	$u_i = \left(\frac{x_i - \mathbf{A}}{c}\right)$	f _i u _i
0 - 50	25	7	7	- 2	- 14
50 - 100	75	21	14	- 1	- 14
100 - 150	125 = A	52	31	0	0
150 - 200	175	79	27	1	27
200 - 250	225	91	12	2	24
250 - 300	275	100	9	3	27
200 000		8-11-12-8	$\Sigma f_i = 100$	38 - 51	$\Sigma f_i u_i = 50$

Mean =
$$\left(A + c \times \frac{\Sigma f_i u_i}{\Sigma f_i}\right) = \left(125 + 50 \times \frac{50}{100}\right) = (125 + 25) = 150.$$

Hence, mean life-time of given bulbs = 150 days.

EXERCISE 25

- 1. Find the mean of each of the following sets of numbers :
- (ii) 0.2, 0.02, 2, 2.02, 1.22, 1.02 (i) 10, 4, 6, 12, 9
- 2. Find the arithmetic mean of :
 - (i) first eight natural numbers; (iii) first six positive even integers;
- (ii) first five prime numbers;
- (iv) first five positive integral multiples of 3;
- (v) all factors of 20.
- 3. The daily minimum temperature recorded (in degrees F) at a place during a week was as under :

	v Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Monda	y Tuesday			23.8	29.9	32.7
35.5	30.8	28.3	31.1	23.0	23 3	01.

Find the mean temperature of the week.

4. The marks obtained by 10 students in a class-test were as follows :

38, 41, 36, 31, 45, 38, 27, 32, 29, 39

Find (i) the mean of their marks;

- (ii) the mean of their marks, when the marks of each student are increased by 2;
- (iii) the mean of their marks, when 1 mark is deducted from the marks of each
- (iv) the mean of their marks, when the marks of each student are halved.
- 5. If the mean of 11, 8, 13, 10, x and 9 is 9.5, find the value of x.
- 6. Find the mean of 25 numbers, it being given that the mean of 15 of them is 18 and the mean of remaining ones is 13.
- 7. The mean weight of 60 students of a class is 52.75 kg. If the mean weight of 25 of them is 51 kg, find the mean weight of the remaining students.

- 8. The mean of five numbers is 18. On excluding one number, the mean becomes 16. Find the excluded number.
- 9. The ages of 40 students of a group are given below :

5	7	0	5
	5	5 7	5 7 9

Find the mean age of the group.

10. Find the mean of the following frequency distribution :

Variate	5	6	7	8	9
Frequency	7	8	14	11	10

11. In a book of 300 pages, the distribution of misprints is shown below :

Number of misprints per page	0	-1	2	3	4	5
Number of pages	154	95	36	7	6	2

Find the average number of misprints per page.

12. The following table gives the wages of different categories of workers in a factory :

Category	06 A	В	С	D	E	F	G
Wages in ₹/day	250	300	350	400	450	500	550
Number of workers	2	4	8	12	10	6	8

(i) Calculate the mean wage.

(ii) If the number of workers in each category is doubled, what would be the new mean wage?

13. If the mean of the following distribution is 7.5, find the missing frequency f:

Variable	5	6	7	8	9	10	11	12
Frequency	20	17	f	10	8	6	7	6

(2005) 14. If the mean of the following observations is 16.6, find the numerical value of p.

Variate (x_i)	8	12	15	18	20	25	30
Frequency (f_i)	12	16	20	р	16	8	4

15. Find the numerical value of x, if the mean of the following frequency distribution is 12.58.

Variate	5	8	10	12	x	20	25
Frequency	2	5	8	22	7	4	2

16. Using short cut method, compute the mean height from the following frequency distribution:

Height (in cm)	58	60	62	65	66	68
Number of plants	15	14	20	18	8	5

17. The number of match sticks contained in 50 match boxes is given below :

Number of Match sticks	40	42	43	44	45	48
Number of boxes	6	7	12	9	10	6

(i) Using short cut method, find the mean number of match sticks per box.

(*ii*) How many extra match sticks are to be added to all the contents of 50 match boxes to bring the mean exactly equal to 45 match sticks per box?

[Hint :

(i) Mean number of match sticks = $43.68 \simeq 44$.

(ii) Number of match sticks to be added = $(50 \times 45) - (2184) = (2250 - 2184) = 66.$]

Measures of Central Tendency (Mean)

Marks			0	- 10) 10	- 20		- 30	30 -	40	40-5		50 - 6
Number of	fstude	ents		3		8		14	9		4		2
Given below	v are	the dai	ly wa	ages	of 200	work	ers i	n a fa	actory	-	100		haile
Daily Wag			240 -			- 360) 3	60 -	420	420	- 480	48	30 - 540
Number of			20)	en Lager	30	-	20	10	10 10 cm	40		90
Calculate th			y wa	ges.	ومعدية المان 14								
. If the mean	of th	e follov	ving	distr	ibutior	n is 24	l, fine	d the	value	of a	ι.		(201
Marks		0 - 1			- 20	20 -	30	30 -	- 40	40	- 50		
No of stuc	lents	7		100	a	8			0		5		
Calculate th		n of t	no fol	lowi	ng dist	ributi	on us	sing s	tep de	eviat	tion met	hoc	l. (201
	le mea						- 30) – 40	4	0 - 50	5	50 - 60
Marks	61320710		- 10	I. and	0 - 20		- 50 25	- O.	30		16	23	10
No. of stud	lents		10		9			. ide			All million		1. V.
Using step distribution Class-inter Frequency	val 50	0 - 60	60 -	70	70 – 8 10	30 80	- 90 14		- 100 8	100) – 110 12	11 12 12	10 – 12 11
distribution Class-inter	val 50	0 – 60 9 apples	60 - 1: were	70 1 e rece	70 – 8 10 orded a	30 80 as give	- 90 14 en be	low. (- 100 8 Calcul	100 ate t) – 110 12 the mea	1. n w	10 – 12 11 veight, (200
distribution: Class-inter Frequency The weights the nearest	val 50 of 50 gram,	0 - 60 9 apples by the	60 – 1 were step	70 1 e rece	70 – 8 10 orded a riation	30 80 as give Meth	- 90 14 en be	low. (- 100 8	100 ate t) – 110 12	1. n w	10 - 12 11 veight, (200 10 - 11
distribution: Class-inter Frequency The weights the nearest Weight in g	val 50 of 50 gram, rams	0 - 60 9 apples by the	60 - 1 were step 5 85	70 1 e rece Dev	70 – 8 10 orded a riation	30 80 as give Meth 95 9	– 90 14 en be od.	low. (- 100 8 Calcul	100 ate t) – 110 12 the mea	1. n w	10 – 12 11 veight, (200
distribution: Class-inter Frequency The weights the nearest Weight in g No. of apple	val 50 of 50 gram, rams	0 - 60 9 apples by the 80 - 85 5	60 - 1: were step 5 85	70 1 • reco • Dev - 90 8	70 - 8 10 orded a riation 90 - 10	30 80 as give Meth 95 9	- 90 14 en be od. 5-10 12	low. (- 100 8 Calcul 00 - 10	100 ate t) – 110 12 the mea 05 – 110	1. n w	10 - 12 11 veight, (200 10 - 11
distribution: Class-inter Frequency The weights the nearest Weight in g No. of apple Weights of 6	val 50 of 50 gram, rams es 60 eggs	0 - 60 9 apples by the 80 - 85 5 s were	60 - 1 were step 5 85 recon	70 1 • reco • Dev - 90 8 • ded	70 - 8 10 orded a riation 90 - 10 as give	30 80 As give Meth 95 9 0 1	- 90 14 en be od. 5 - 10 12 ow :	low. (- 100 8 Calcul 00 - 10 8	100 ate t 05 1) – 110 12 the mea 05 – 110	1: n w	10 - 12 11 veight, (200 10 - 11 3
distribution: Class-inter Frequency The weights the nearest Weight in g No. of apple Weights of 6 Weights (in Number of	val 50 of 50 gram, rams es 60 eggs eggs	0 - 60 9 apples by the 80 - 85 5 s were 75 - 7 4	60	70 1 • reco • Dev - 90 8 • ded 0 - 84 9	70 - 8 10 orded a riation 90 - 10 as give 4 85 1	30 80 as give Meth 95 9 95 9 9 80 9 80 80 80	- 90 14 en be od. 5 - 10 12 ow : 90 - 9 17	low. (00 1(94 9	- 100 8 Calcul 00 - 10 8	100 ate t 05 1	0 - 110 12 the mea 05 - 110 4	1: n w	10 - 12 11 veight, (200 10 - 11 3
distribution: Class-inter Frequency The weights the nearest Weight in g No. of apple Weights of 6 Weights (in Number of Calculate the [Hint : The 74.5 - 79.5,	val 50 gram, rams s 60 eggs eggs eir me given 79.5 –	$\begin{array}{r} 0 - 60 \\ 9 \\ apples \\ by the \\ 80 - 85 \\ 5 \\ s were \\ 75 - 7 \\ 4 \\ ean wei \\ interva \\ 84.5, \end{array}$	60 - 1 were step 5 85 - - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 70 \\ 1 \\ \hline 0 \\ -90 \\ 8 \\ \hline 0 \\ -90 \\ 8 \\ \hline 0 \\ -90 \\ 8 \\ \hline 0 \\ -89 \\ -89 \\ -89 \\ \end{array}$	70 - 8 10 orded a viation 90 - 10 as give 4 85 1 e near e taken 5, etc.	30 80 as give Meth 95 9 95 9 0 - en bel - -89 - .3 - est gm as : .3 -	- 90 14 en be od. 5 - 10 12 ow : 90 - 9 17 h.	low. (00 1(94 9	- 100 8 Calcul 00 - 10 8 5 - 99 12	100 ate t 05 1 10	0 - 110 12 the mean 05 - 110 4 00 - 104 3	1: n w	10 - 120 11 veight, (200 10 - 11 3 05 - 109
distribution: Class-inter Frequency The weights the nearest Weight in g No. of apple Weights of 6 Weights (in Number of Calculate the	val 50 gram, rams s 60 eggs eggs eir me given 79.5 –	$\begin{array}{c c} 0 & - & 60 \\ \hline 9 \\ apples \\ by the \\ 80 & - 85 \\ \hline 5 \\ s were \\ \hline 75 & -7 \\ 4 \\ ean weie \\ interva \\ 84.5, \\ e gives \\ s & I \\ \end{array}$	60 - 1 were step 5 85 - - - - - - - - - - - - - - - - - - -	70 1 e reco 0 Dev -90 8 ded 0 - 84 9 to the ty be - 89. cs sc L	70 - 8 10 orded a viation 90 - 10 as give 4 85 1 e near e taken 5, etc.	30 80 as give Meth 95 9 95 9 0 - en bel - -89 - .3 - est gm as : .3 -	- 90 14 en be od. 5 - 10 12 ow : 90 - 9 17 n.	low. (00 1(94 9	- 100 8 Calcul 00 - 10 8 5 - 99 12	100 ate t 05 1 10	0 - 110 12 the mean 05 - 110 4 00 - 104 3 tion : Less	1: n w) 1	$ \begin{array}{r} 10 - 12 \\ 11 \\ veight, \\ (200 \\ 10 - 11 \\ 3 \\ 05 - 109 \\ \end{array} $

Take the assumed mean as 45. Give your answer correct to 2 decimal places.

Number of patients	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
Number of days	5	2	7	9	2	5
Indiniber of days	A. MICHAN	Gara's Salar	E the feel of	Sandy distriction	no malinest	(2019

Foundation Mathematics for Class X

Class-interval	5-15	15-25	25-35	35-45	45-55
Frequency	2	6	4	8	4
	<u>ine osta an</u> i	<u>1. to 300 11, 11</u>	and emilaves	<u>ale filo sa as</u>	and and
- THE REPUBLICATION			QUESTION	in the she was	hand a starter of the start
1.1.00 (B)			QUESTION	5	
ose the correct o	ption :	hear that was a	1 Carls all weeks	a statistic may	
1. Which of the foll (a) Mean	(b)	Mode	(c) Range	e (d) Median
2. The mean of the (a) 102	(b)	104	(c) 106	(d) 108
3. If the mean of 7	7, 5, 13, x and $7, 5, 13, x$	d 9 be 10, th	en the value o		
(u) = •	(b)		(-) = -		d) 16
4. In a monthly tes as follows:			Mathematics b		
0, 0, 2, 2, 3, 3,			81 (d) 100		
The arithmetic			ed 1s :	ol and to doe	d) 6
(a) 3	(b)				
5. Out of 100 num 7s. The mean of			e 5s, 30 were	os and the r	emanning we
(a) 5.3	(b)	5.4	(c) 6.1	(d) 6.5
6. If 36 a + 36 b =				of 5 number	d) 16
(a) 6	(b)		(c) 12	A LA HARRING	
7. If the mean of 7 will be the new	mean?			to endev (
(a) 36		43			
8. While computin	ng the mean	of grouped da	ta, we assume	that the free	luencies are
(a) evenly dis					
(b) centred at		imits of the cl			
		mits of the cl			
9. If the mean of	five observat	ions $x, x + 2$,	x + 4, x + 6 and	$dx + 8 ext{ is } 11$, then the m
of first three ol	bservations is	s :	A State		
(a) 9	(b)	11	(c) 13		(d) none of the
10. The mean of fiv What is the pr	oduct of B at	nd D?			
(a) 1365	(b)	1585	(c) 1935	t of 7 has an	(d) 2035
11. The mean of 5 of B containing for	our consecuti	ive even num	pers if the sma	hat will be th allest number	e average of a of set B is
more than the		moer or see m:			(1) 50
more than the			(C) 57		(a) 59
more than the (a) 53 12. If the mean of	(b) f four observ	55 vations is 20	(c) 57 and when a c alue of c is :		
more than the(a) 5312. If the mean or observation the	(b) f four observ e mean becor	55 vations is 20 nes 22. The v	and when a calue of c is :	constant c is	
 more than the (a) 53 12. If the mean or observation the (a) -2 	(b) f four observ e mean becor (b)	55 vations is 20 nes 22. The v 2	and when a calue of c is : (c) 4	constant c is	added to ea
more than the(a) 5312. If the mean or observation the	(b) f four observ e mean becor (b) the observati	55 vations is 20 nes 22. The v 2	and when a calue of c is : (c) 4	constant c is	added to ea

14	I. The mea	n of a cer	tain nu	mber of	observa	ation	s is \overline{x} .	If each obs	servation	is multiplie
	by <i>m</i> (m	\neq 0) and	then in	creased	by <i>n</i> , t	hen	the me	an of new $x = n$	Contra Cont	
	(a) $\frac{x}{m}$	+ n	(b) $m \overline{x}$	+ <i>n</i>					
15	m 5. The mean instead	n of 100 of 40, the	observa	tions is mean is	50. If a	one	of the o	bservation	A REAL PROPERTY OF A REAL PROPER	
	(a) 40		(b) 49.9	1:1210	HQ	(c) 50			50.1
16	If the m	ean of the	followi	ng data	is 25, 1	he v	alue of	p is equa		
	x	5	15	2.18.0	25	38	101 127	45		
	f	3	р		3	6	10.11. A.	2	(6)	5
17	(a) 2 . Consider	the table	E Ly	b) 3 below :			(c) 4		(d)	J
		Marks		0 - 10	10 - 2	0 2	0 - 30	30 - 40	40 - 50	50 - 60
	Numbe	er of stude		12	18		27	20	17	6
									1 .: Evioliti	
		n of the n			ve is :		(c) 27		(d)	28
	(a) 6			o) 18		- 07		ho value (of n is :	
18	. If the me	ean of the	followi	ng distri						- 50
	alshaanni	Class	na man	0 - 1		- 20	20 -			10
	F	requency		8		D	12		0	N.I. The second
	(a) 6		(b) 7			(c) 9		(d) 1	
	(a) 25	number is	: (b) 26		23.4	(c) 28	vroado V la	(d) 3	5
20.	For what	value of $(x + 9)$	x the n with fro	nean of equencie	the give s 2, 3, 4	n ob , 6 a	servation	ons (2x – espectively	5), $(x + 3)$ is 4?	(7 - x),
	(a) 1		(b) 2		(d) 3		(d) 4	0
21.	The mean 2 and so	an than t	ha new	mean is						
	(a) $\overline{x} + \overline{x}$	1	(b)	$\overline{x} + \frac{n}{2}$				$\frac{n+1}{2}$		
22.	In the for from a , of	mula $\overline{x} = 0$	$a + \frac{\sum f_i}{\sum f_i}$	$\frac{t_i}{t_i}$ for fin	ding the	mea	in of gro	ouped data	, d _i s are	deviations
	(a) lower	r limits of						er limits of		
		points of t					1.14	iencies of		Denomina
23.	If x_i 's are the frequencies	he class maps and \overline{x} is	arks of t the me	he class- an, ther	interval: $\Sigma(f_i x_i - f_i x_i)$	$-\overline{x}$ i	rouped s equal	data, <i>f_i's</i> ar to :	e the corr	esponding
			(1)	•			1 1		(d) 2	
24.	(a) -1 In the form $u_i =$	ula $\overline{x} = a +$	$h\left(\frac{\Sigma f_i}{\Sigma f_i}\right)$	$\left(\frac{u_i}{r_i}\right)$ for i	finding t	he m	ean of g	rouped free	quency dis	tribution,
	(a) $\frac{x_i + a}{h}$		(b)	$h(x_i -$	a)	(0	$(x_i - a) \frac{x_i - a}{h}$	<u>.</u> 	(d) <u>a</u>	$\frac{-x_i}{h}$
	In a class another cla mean mark	ass of 50 s	students	the me	ean mar	ks ol	otained	in the same	me test is	60. The
	(a) 40	us obtained	(b)		00 01 00) 48	US VARCH V	(d) 50	
	(a) 1 0		(0)	10		ic	, 10		(u) 00	

26.	A distribution consists of their means 2, 2.5 and 2	respectively	. The mean	of the com	bined distri	bution is :
	(a) 2.1	(b) 2.2	(c	2.3	(4)	9.4
27.	The combined mean of the is 3. If the first, second the mean of third group	and third gr	s 12 and the	- combined	moon of fine	Lawrence States
	(a) 10	(b) 12	R mithiv () 13	(d)	01
28.	The mean weight of 17 b increases by 3 kg. What (a) 91.8 kg	oxes is 92 k will be the r	g. If 18 new nean weigh	boxes are to f the 18	added, the r new boxes?	nean weight
29.	Consider the following di	istribution:			hinis I., Card	
	Class mini en	0 - 20	20 - 40	40 - 60	60 - 80	80 - 100
	Frequency	17	28		thes of a last	19
	If the mean of the above	distribution	is 50, what	t is the valu	1e of f?	
	1. The Still of the all functions for the State	annot be det (b) Median	ermined gra (c	aphically?) Mode	(d) n	one of these
Direct that	tions (Q 31 to 34) : Stud follow :	ly the follow	ing inform	hation and	answer the	e questions
26 64	narks obtained by 10 stud 4, 48, 52, 57, 73, 26, 39, 7 The mean marks of the	8 67		and the street		
	(a) 49.1	(b) 53.7	(c) 54	(d)	60
32.	If the maximum marks i by the students is :			-		ks obtained
	(a) 65%	(b) 67.5%	(c) 68%	(d)	72%
33.	The mean marks of the	top 5 scorers	in the clas	s is :		
		(b) 66.8) 67.2	(d)	67.8
34.	As per the Board's instr awarded 3 grace marks.					
		(b) 1.2) 1.5	(d)	
	tions (Q 35 to 38) : Stud follow :	y the follow	ing inform	nation and	answer the	e questions
At a	courier company, a daily	report of po	arcels receiv	ved for disp	patch is pre	pared every

At a courier company, a daily report of parcels received for dispatch is prepared every evening, which classifies the parcels on the basis of their weights. The report of a certain day is as under:

Weight of parcel (in grams) (x)	Below 600	Below 500	Below 400	Below 300	Below 200	Below 100
Number of parcels (f)	60	58	54	35	22	10
35. How many pare	cels have w	eights in th	e range of	300 - 400 g	rams?	
(a) 4	(b)) 12	(c)	13	(d)	19
36. How many pare	els have w	eights in th	e range of	200 – 300 g	rams?	
and allow many part						
(a) 10) 12	(c)	13	(d)	19
(a) 10	(b)) 12	(c)			
	(b) following v) 12 veight rang	(c) es, the nun		els is the lo	
(a) 10 37. In which of the	(b) following v (b)) 12 veight rang) 200 - 300	(c) es, the num) (c)	nber of parc 400 - 500	els is the lo (d)	owest?

ASSERTION-REASON QUESTIONS

Directions : In each of the following, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option :

1. Assertion (A) : For a grouped frequency distribution, we use Mean = $A + \frac{\sum ft}{\sum f} \times h$ to find the mean using step deviation method.

Reason (**R**) : Here $t = \frac{x - A}{h}$

- (a) A is true, R is the false
- (b) A is false, R is true
- (d) Both A and R are false.
- (c) Both A and R are true
- 2. Assertion (A) : If x_i 's are the mid-points of the class intervals of a grouped data, $\sum fi$'s are the corresponding frequencies and \overline{X} is the mean, then $\sum (f_i x_i - \overline{X}) = 1$

Reason (R): The sum of the deviations from the mean is 0.

- (a) A is true, R is the false (b) A is false, R is true
- (c) Both A and R are true (d) Both A and R are false.
- 3. Assertion (A) : Out of 25 numbers, the mean of 15 of them is 18. If the mean of the remaining numbers is 13, then the mean of the 25 numbers is 14.

Reason (R) : Mean of the variates $x_1, x_2, ..., x_n$ having corresponding frequencies

$$f_1, f_2, ..., f_n$$
 is given by $\overline{X} = \frac{f_1 x_1 + f_2 x_2 + ..., f_n x_n}{x_n + x_2 + ... + x_n}$

- (a) A is true, R is the false (b) A is false, R is true
 - (d) Both A and R are false.
- (c) Both A and R are true